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Constructing Specifications by Combining Parallel
Elaborations

MARTIN S. FEATHER

Abstract—Constructing specifications of complex tasks is often a la-
borious activity in spite of the rich vocabulary provided by specifica-
tion languages. An incremental approach to construction is proposed,
with the virtue of offering considerable opportunity for mechanized
support. Following this approach one builds a specification through a
series of elaborations that incrementally adjust a simple initial speci-
fication. Elaborations perform both refinements, adding further detail,
and adaptations, retracting oversimplifications and tailoring approxi-
mations to the specifics of the task. It is anticipated that the vast ma-
jority of elaborations can be concisely described to a mechanism which
will then perform them automatically. When elaborations are indepen-
dent, they can be applied in parallel, leading to diverging specifications
which must later be recombined.

The approach is intended to facilitate comprehension and mainte-
nance of specifications, as well as their initial construction. The advan-
tages of following this approach stem from the gradual nature of the
elaboration process, the separation of concerns through following in-
dependent elaborations in parallel, the simplicity of the individual elab-
oration steps (the effects of each step are well delineated), and the
availability of an explicit record of construction.

Index Terms—Elaboration of designs, explanation, high-level edit-
ing, maintenance, reuse, specification evolution.

1. INTRODUCTION

A. The Role of Formal Specifications in Software
Development

NUMBER of researchers have argued forcefully that

the best way to significantly improve the production
and maintenance of software is to formalize and provide
mechanical assistance for the entire programming process
(see the joint report [13]). The acquisition and use of a
formal specification of the task to be programmed is a
common factor to many of the methods proposed to attain
this goal.

Such specifications serve as formal expressions of in-
formal requirements. A formal specification differs from
the intended program by expressing only what the desired
behavior of that program is to be, without being con-
strained to state how the program is to achieve that be-
havior. Because of the specification’s formal nature, me-
chanical tools can assist in its use in a number of ways:

Contract: The specification serves as a reference point
against which to check a candidate implementation.
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Analysis: Studies of the specification (via checking for
consistency and completeness, theorem proving, and
symbolic evaluation) provide feedback on some of the im-
plications of the task that are not readily apparent at the
level of informal requirements.

Prototyping: The specification is executed to reveal
some aspects of the operation of the proposed software.
Such execution generally falls short of the implementa-
tion in some way, for example, by using resources and
facilities which will not be available to the actual imple-
mentation, or by crudely approximating the user interface
and so forth.

Derivation: The formal specification serves as the
starting point from which to derive the program. This is
the objective of much of the wide body of ongoing pro-
gram transformation research.

Research on formal specification has tended to focus on
two aspects, using specifications (the categories outlined
above), and expressing them. Since the specifications of
complex tasks may themselves be complex (e.g., see the
diverse case studies in [10]), expressing and comprehend-
ing such specifications may be difficult (in spite of the fact
that specifications need state only what the task is, not
how it is to be done). Specification languages, by provid-
ing a rich vocabulary, mitigate this difficulty, but do not
eliminate it entirely. (We found this to be the case for our
own specification language, Gist, even though it had been
tailored from the outset to meet our abstract design cri-
teria for an ideal specification language; our criteria are
outlined in [3], and Gist is described in its early stages in
[12], and in its more complete form in [4].) The inescap-
able conclusion is that the process of specification con-
struction must be formalized and supported by mechanical
tools; this is the area addressed by the remainder of the

paper.

B. Supporting the Construction of Specifications

Early work toward facilitating construction of specifi-
cations was done by Burstall and Goguen; they argued
that complex specifications should be put together from
simple ones, and developed their language CLEAR to
provide a mathematical foundation for this construction
process [5]. They recognized that the construction process
itself has structure, employs a number of repeatedly used
operations, and is worthy of explicit formalization and
support.
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Goldman observed that natural language descriptions of
complex tasks often incorporate an evolutionary vein—
the final description can be viewed as an elaboration of
some simpler description, itself the elaboration of yet a
simpler description, etc., back to some description
deemed sufficiently simple to be comprehended from a
nonevolutionary description [11]. He identified three ‘‘di-
mensions’’ of changes between successive descriptions:
structural—concerning the amount of detail the specifi-
cation reveals about each individual state of the process,
temporal—concerning the amount of change between suc-
cessive states revealed by the specification, and cover-
age—conceming the range of possible behaviors permit-
ted by a specification.

Balzer has provided a complete characterization of ge-
neric changes to the structure of a domain model, and has
begun to consider propagating the effects of those changes
through the operations that use the model and through the
already-established data base of information [2]. These
changes are applied as high-level editing steps in the
maintenance of the computing environment that we are
using on a day-to-day basis.

Recently Fickas has begun to extend his AI problem-
solving approach, originally for transformational deriva-
tion of implementations from specifications [8], to spec-
ification construction [9]. He identifies some domain-in-
dependent goals of specification construction, and
methods to achieve them. Fundamental to his approach is
the notion that the steps of the construction process can
be viewed as the primitive operations of a more general
problem-solving process, and are hence ultimately mech-
anizable.

Also somewhat related is the ongoing Programmer’s
Apprentice project (see [15] and, more recently, [19]).
Although the approach to software production embodied
in the aims of this project (to build a tool which will act
as an intelligent assistant to a skilled programmer) differs
from a specification-centered methodology, much of what
they have found has relevance to our enterprise.

Finally, we see much overlap with issues arising in
transformational derivations of implementations from
specifications. Although such derivations are intended to
preserve meaning across steps (whereas the elaboration
steps in developing specifications deliberately change
meaning), researchers have suggested the need to capture
more of the structure of the development process—see [20]
for Wile’s exposition of these themes.

C. Incremental Elaboration of Specifications

We advocate that formal specifications be constructed
and explained in the evolutionary style identified by Gold-
man, that is, start with a specification of some very sim-
ple, idealized version of the task, and incrementally elab-
orate that toward the final, complex specification. This
has a number of potential benefits, discussed next.

Gradual Path to the Final Specification: Construction
and comprehension can be done gradually. We do not have
to introduce or digest all details of all aspects of the spec-

199

ification in one fell swoop, but rather can evolve our un-
derstanding from a simple starting point, at each stage
introducing only a palatable amount of additional infor-
mation.

Elaborations for Refinements and Adaptations: Some
elaboration steps will be strightforward ‘‘refinements,”’
simply adding more detail to the already denoted behav-
iors. Other steps will change which behaviors are de-
noted, by discarding some existing ones or adding new
ones (which are not refinements of existing behaviors).
For example, specification of a communication system
may begin with an idealized version in which the com-
munication channel is perfect, and an elaboration may re-
tract this idealized assumption by adding in new behav-
iors in which transmissions become corrupted or fail
entirely. The ability to make such adaptive changes lib-
erates us from the constraint that our starting point be a
pure abstraction of the final specification.

Idiomatic Elaborations: While the individual details af-
fected by an elaboration depend upon the particulars of
the task being specified, it is often the case that an elab-
oration causes some change whose high-level nature can
be expressed somewhat independently of the task. For ex-
ample, an elaboration might add a level of subtypes to an
existing data type, or introduce an exception to the al-
ready described normal-case behavior. At this more ab-
stract level of description, the same changes may occur
repeatedly. Recognizing and recording the structure of the
elaboration process in terms of these abstractions should
facilitate both explanation and maintenance of a specifi-
cation.

High-Level Editing, Mechanized Support for Elabora-
tions: Further study of idiomatic elaborations reveals that
the intended change can often be described fairly con-
cisely, while the execution of that change involves the
repetition of individual changes distributed across the
specification. This phenomenon suggests an opportunity
for mechanized tools to support performing the change.
In this respect our approach resembles that of the Pro-
grammer’s Apprentice project, wherein the Knowledge-
Based Editor in Emacs (KBEmacs) automatically takes
care of several kinds of programming details involved in
a change.

Enhanced Potential for Reuse: We foresee an ex-
panded opportunity for reuse of specification compo-
nents. Abstract, general-purpose components can be in-
troduced and thereafter adjusted and tailored to the
specifics of the particular task. Note that elaborations that
adapt a specification’s behavior more than simply refining
it will be used to do the adjustment and tailoring of com-
ponents. Similarly, in the Programmer’s Apprentice proj-
ect, programming ‘‘cliches’’ are combined to construct
programs, and introduction of a cliche is followed by ed-
iting to tailor it to the particular programming task, just
as (we are arguing) it is necessary to tailor introduced
specification components.

Easier Maintenance: Maintenance (evolution) of spec-
ifications can be achieved by adding, removing, or mod-
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ifying the elaborations, and thereafter rederiving the spec-
ification. We believe that the structured nature of the
elaboration process and the concise statements of elabo-
rations will aid in locating and performing modifications.
Of course, modifications to early elaborations may have
far-reaching consequences if successive elaborations rely
heavily upon some aspect that has been adjusted. The
elaboration approach (or any other) cannot make specifi-
cations infinitely transmutable at little cost.

D. Conducting Independent Elaborations in Parallel

A further aspect of our approach is a degree of arbi-
trariness in the ordering of independent elaborations, that
is, elaborations that do not depend upon each other. In
such a case, incremental construction (or explanation) can
be divided into a separate path for each of the independent
elaborations, and each path pursued in parallel. This
forms a tree of elaboration paths, whose branch points
correspond to the divergence of parallel elaborations, and
whose leaves correspond to specifications, each elabo-
rated in some manner particular to its branch. These spec-
ifications must somehow be combined to realize the com-
plete, final speciﬁcation.l We see a number of advan-
tages to formalizing and supporting this style of parallel
elaboration followed by combination, discussed next.

Separation of Concerns: Separately considering paral-
lel elaborations of a specification reduces the number of
details that must be considered at any one time by ex-
cluding extraneous details. Thus the anticipated advan-
tages of the incremental approach should be amplified by
this parallelism.

Explicit Combination: Combination of completely in-
dependent parailel elaboration paths should be trivial, and
hence completely automatable. However, complete in-
dependence is a perfect ideal; in practice, elaborations
may often be ‘‘almost’’ independent, in the sense that
there is some small amount of interaction among them. In
such cases, it is worthwhile to pretend that they are in-
dependent, delaying consideration of minor dependencies
until it is time to combine them. Because combination is
an explicit activity, it increases the likelihood that we will
recognize and think about such dependencies, which man-
ifest themselves as further choices. Mechanized tools
might be able to suggest those choices, and assist in ex-
ecuting the one chosen by the specifier.

II. CASE STUuDY—THE PATIENT MONITORING SYSTEM

This section presents the elaboration-style development
of the specification of a small system-modeling example,
the Patient Monitoring System. The example has been
used by a number of researchers (including Stevens,
Myers, and Constantine [17]; Zave [21]; and Roten-
streich and Howden [16]) to illustrate approaches to spec-

'When a later elaboration refers to details that are introduced in several
earlier, parallel elaborations. their paths have to be combined in prepara-
tion for applying the later elaboration. Thus more generally the structure
of the elaboration process is a lattice rather than simply a tree.
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ification and implementation. The original statement of
the example is:

A patient-monitoring program is required for a
hospital. Each patient is monitored by an analog de-
vice which measures factors such as pulse, temper-
ature, blood pressure, and skin resistance. The pro-
gram reads these factors on a periodic basis
(specified for each patient) and stores these factors
in a database. For each patient, safe ranges for each
factor are specified (e.g., patient X’s valid temper-
ature range is 98 to 99.5 degrees Farenheit). If a
factor falls outside of a patient’s safe range, or if an
analog device fails, the nurse’s station is notified.
[n.

The specification of the Patient Monitoring System pre-
sented below follows our suggested approach, that is,
starts from some trivial initial specification and is elabo-
rated in a number of parallel ways which are thereafter
combined to result in the final, complete specification.

A. Starting Point

The starting point is a very simple specification that de-
scribes an approximation to the actual task. It is intended
to be simple enough to be easy to comprehend. Initially,
it comprises the following:*

e Patients, of which there may be several. Each has a
“‘value’’ (a crude approximation of that patient’s medical
status) which changes randomly.

e The nurse’s station, of which there is only one. It
contains the definition of whether or not a patient’s value
is considered safe.’ It receives notifications from the mon-
itor of unsafe patient values.

e The monitor, of which there is only one. It watches
the value of each patient, and upon the value becoming
‘“unsafe’” (whether a value is safe or unsafe is determined
by the definition belonging to the nurse’s station), notifies
the nurse’s station. The monitor is the piece to be imple-
mented.

Fig. 1. shows the starting point expressed in our spec-
ification language Gist.* As we perform the elaborations,
the changes to this Gist specification will be presented.

Closed System Specification: The piece to be imple-
mented (the monitor) is described along with some details
of its environment (patients and the nurse’s station). By
locating the randomly changing patient values and the def-

*An even simpler starting specification would have had just one patient,
leaving it as an elaboration step to extend the specification to multiple pa-
tients. However, the starting point presented is sufficiently simple. and pro-
vides enough examples of elaborations to be instructive yet not overwhelm-
ing.

*The English description merely states that **. . .safe ranges. . .are
specified. . . "’; I have taken this to mean that their specification is part of
the monitor’s environment; the nurse’s station seems the appropriate part
of the environment to contain their specification.

*Occasionally Gist’s syntax has been simplified, and some of the details
of the specification have been omitted (notably declarations of cardinality
of relations and types—e.g.. that there is one and only one nurse’s station,
and of the interfaces between agents—e.g., that the monitor may observe
but not change the definition of SAFE that resides in the nurse’s station).
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{ type value
A new type called value is declared (Gist language keywords are underlined throughoul and
these italics are used here to comment the Gist speci fication )

tvpe patient with

{ implicit relation PVALUE(patient,value) }
Patient is declared a type. along with a subsidiary declaration of a relation named PVALUE.
FVALUE is a binary relation between objects of type patient and objects of type value. The
keyword implicit indicates that tuples of the relation are inserted and deleted
nond istically (modeling the unpredictable variability of patients'status).

type monitor with

{ demon NOTICE _ UNSAFE|patient]
when start not SAFE( PVALUE(patient.?) )
do NOTIFY [patient]

Monitor is declared a type with a subsidiary demon NOTICE_UNSAFE, parameterized
by type patient. A demon has a predicate (following the keyword when)and a statement
(following the keyword do). In every state, for each possible instantiation of its parameter(s)
that makes its predicate true, a demon begins its statement. "PVALUE(patient,?)" denotes
any object o for which PVALUE(patient,o) holds (in this case. a uniquely determined object
of type value). "start P" where Pis a predicate is true if P has just become true. Thus the

NOTICE _UNSAFE demon will invoke the NOTIFY procedure on a patient in every state in
which that patient’s PVALUE has stopped being safe

type nurse's_station with
{ relation SAFE(value) , procedure NOTIFY{patient| }
Nurse's_station is declared a type, with a subsidiary relation SAFE on values; NOTIFY
is a subsidiary procedure which takes one argument of lype patient and does nothing
(however calls Lo the procedure are part of the denotation of the speei fication).

Fig. 1. Starting point specification.

inition of safe and unsafe values in the environment, it is
clear that the monitor must respond to these, but cannot
affect them (e.g., cannot redefine safe).

Together, the monitor and its environment form an ex-
ecutable model of the proposed system interacting with
its environment. This model is operational, in that it de-
fines ongoing behaviors in which patient values are
changing and the monitor is responding appropriately. In
fact, the specification models every possible behavior of
the environment (changing patient values, and definitions
of safety of values), and thus completely defines how the
monitor must behave. We believe this to be a useful way
of specifying so-called ‘‘embedded systems.’’ In this re-
spect, we strongly agree with Zave, who calls this an
‘“‘operational’” approach to specification; she uses the pa-
tient monitoring system and other examples as illustra-
tions [21]. Our specification language, Gist, has been
constructed to facilitate this approach to specification (see
[7] for more discussion of this issue). Futher mention here
will be limited to pertinent interactions with the elabora-
tive style.

B. The Elaborations

The initial specification is a very crude approximation
of the patient monitoring world. The elaborations that
gradually develop the approximation are as follows:

¢ Splice in a device between each patient and the mon-
itor, so that the monitor reads values of devices rather
than patients, and each device forwards its patient’s value.

* Introduce the possibility that devices fail (this elab-
oration depends upon the results of the previous one).

* Refine a patient’s value into a composite of values,
one for each factor.

* Modify the monitor from observing continuously to
observing periodically.

* Make the safety of a patient’s value depend on which
patient it is.
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These will be explained in detail in the sections that
follow, and for each, the following issues will be ad-
dressed:

Motivation: The elaborations are justified in terms of
the domain of monitoring patients.

Change: An elaboration may change the meaning of the
specification, i.e., the behaviors it denotes. Goldman’s
three dimensions of change will be used as the first level
of categorization of the changes encountered in this ex-
ample.

High-Level Editing Step: Elaborations are shown to be
instances of high-level editing steps, and we speculate on
the role of automated support for executing these steps.

Continuation: Some further elaborations that might be
necessary to accurately model the task domain are men-
tioned but not explored in depth within this paper.

1) Elaboration of Monitor’s Reading of Patient Val-
ues—Splicing in a Device Between Patient and Moni-
tor: The monitor may not read each patient’s value di-
rectly, but must instead read the value of an intermediary,
a ‘‘device’’ that continuously observes a patient’s value,
and displays that value (unchanged) to the monitor.

Motivation: This elaboration is made to refine the
model of the monitoring domain, in this case concerning
the monitor’s observation of patients.

Change: At this stage, since a device continuously
displays its patient’s value, the monitor will react as be-
fore, indeed, the whole system will operate as before; the
only change has been to introduce a level of indirection
into some internal communication. As future elaborations
approximate devices, this will no longer be the case. In
Goldman’s terms, it is a pure structural change because
it increases the detail within the states of the behaviors,
but does not change the number of states, nor the set of
behaviors.

High-Level Editing Step: We expect the splicing of
an intermediary into a previously direct data path to recur
frequently in specification elaborations. We envisage de-
scribing the desired change to an automated tool which
would then perform the change at all the requisite loca-
tions in the specification. The new and modified portions
of the specification are shown in Fig. 2 (boldface is used
to highlight the changes).

2) Elaboration of Devices—Devices May Fail: This
elaboration refines devices (and so must follow the elab-
oration that introduced devices into the specification). A
device was defined to display its patient’s value. The
elaboration introduces a new behavior for a device, which
is to be thought of as an exception to the already defined
normal case behavior. The new behavior is that a device
may fail; while a device is failed, it displays any value,
not necessarily its patient’s value. This elaboration is pre-
sented in two stages: introduction of the exceptional be-
havior, and adjustment of the specification in response
to the introduced exception.

Introduction of exceptional behavior (device failure):

Motivation: This refines the model of the environ-
ment to reflect the reality of imperfect devices.
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type device with
{ implicit relation DVALUE(device,value)

" invariant DEVICE _VALUE_EQUALS_LINKED _PATIENT _VALUE
all d|device || DVALUE(d,?) = PVALUE(LINK(d,?),?)

relation LINK(device,patient)

Device is declared a type with subsidiary relation DVALUE between devices and values
Similarly, LINK is a relation between devices and patients
DEVICE _VALUE _ EQUALS _LINKED _ PATIENT _VALUE is an invariant, a predicate
which must hold in every state. It is used here to ensure that for every device d, d’s value
(namely, the value in the DVALUE relation to d) equals d's patient's value (namely, the value
in the PYALUE relation to the patient in the LINK relation to d).

type monitor with

{ demon NOTICE _ UNSAFE|patient]
when start not SAFE( DVALUE(LINK(?,patient),?) )
do NOTIFY(patient)

}

Fig. 2. Modifications to introduce devices.

Change: Device failure adds more detail (each de-
vice is in one of two conditions, failed or not failed), and
adds new behaviors that are not refinements of any of the
original behaviors (while a device is failed, the value it
displays need not be the same as its patient’s value; as a
consequence, the occasions on which the monitor issues
warnings to the nurse’s station may be different from be-
fore). In Goldman’s terms, the change affects both the
structural and coverage dimensions.

High-Level Editing Step: Introduction of the excep-
tional case is straightforward—a unary relation (i.e., a
predicate) on devices models whether or not they are
failed, entry into and out of failed state is specified to
occur at random, and the invariant relating a device’s
value to its patient’s value is weakened to hold only when
the device is not failed (i.e., does not hold in the excep-
tional case). Use of a unary relation is likely to be a fre-
quently applied characterization of an exceptional condi-
tion; if so, an automated editing step could assist in
introducing such a relation, and in applying it to weak-
ening an invariant in this manner. The modified portions
of the specification are shown in Fig. 3.

Adjustment of the specification in response to the in-
troduced exceptional behavior:

To make the adjustment, we determine where the
change to devices impacts the specification, adjust those
locations as appropriate, and continue by propagating the
impact of those adjustments recursively.

Motivation: One of the underlying goals of the spec-
ification is that the nurse’s station is accurately informed
of the status of patients. The failure of devices violates
that goal, and thus prompts us to consider adjusting the
specification accordingly.

High-Level Editing Step: Determining where the
change impacts the specification could be done automat-
ically by locating those places where devices are used,
namely within the declaration of the LINK relation, and
within the NOTICE_UNSAFE demon of the monitor. We
decide that declaration of the LINK relation needs no ad-
justment (a device remains linked to the same patient ir-
respective of whether or not the device is failed). Within
the NOTICE_UNSAFE demon, we decide to adjust the
predicate of the conditional that determines when NO-
TIFY is invoked. For the normal case (not failed), we

type device with
{ implicit relation DVALUE(device,value)

implicit relation FAILED(device)

invariant DEVICE _ VALUE _EQUALS _LINKED _PATIENT _ VALUE
all d|device || not FAILED(d) implies
DVALUE(d,?) = PVALUE(LINK(d,?),?)

relation LINK(device,patient)

Fig. 3. Modifications to introduce device failure.

leave the condition unchanged; for the exceptional case
(failed), we cause NOTIFY to be invoked at the start of
that exception; this is shown in Fig. 4.

In adjusting an impacted portion of the specification
there may be a number of reasonable alternatives for an
automated tool to suggest, among which the specifier
would select.’

Change: Our choice of adjustments seems a reason-
able compromise of the original goal, since in the normal
case (device not failed) things happen as before, and in
the exceptional case (device failed) a notification is issued
as soon as the exceptional case arises.

Continuation: Because NOTIFY now can be in-
voked in two cases, in the normal case of an unsafe pa-
tient value arising, and in the exceptional case of device
failure, a reasonable extension would be to distinguish be-
tween these cases when NOTIFY is invoked. This could
be done by extending NOTIFY with an additional boolean
argument to indicate whether it had been invoked in the
exceptional case or not; see Fig. 5.

Device failure is assumed to be a detectable condition,
detectable in some manner other than by comparing its
displayed value with its patient’s value (the monitor, not
having access to the patient values, cannot do such a com-
parison; instead, detection of such failure is represented
by giving the monitor access to the unary relation
FAILED). In reality, a device might fail without giving
any such indication, in which case the monitor could do
nothing to detect such an occurrence, and would not know
to warn the nurse’s station on an unsafe condition arising.
This is easily modeled by, say, introducing (via an elab-
oration, of course) a secondary unary relation on devices
that acted like FAILED but could not be seen or used by
the monitor. This would extend the behaviors denoted by
the specification to include some in which a device no
longer reflects its patient’s value, yet its FAILED relation
remains false, in which circumstances the patient value
may be unsafe without the nurse’s station ever having been
notified. Such a specification would draw our attention to
the possibility that perfectly safe monitoring may be im-
possible given devices that fail undetectably, but would
not alter the way the monitoring program should respond
to the signals it is able to observe.

3) Elaboration of Patients—A Composite of Values,
One for Each ‘‘Fgctor’’: We now turn our attention to

*One such alternative in our example would be to provide relation SAFE
with both the device value and an indication of whether or not the device
was failed, and leave it to the definition of SAFE, i.e., the nurse’s station,
to decide whether or not these constituted a safe condition.
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demon NOTICE _ UNSAFE|patient]
when not FAILED(LINK(?,patient))
and start not SAFE( DVALUE(LINK(?,patient),?) )
or start FAILED(LINK(?,patient))
do NOTIFY [patient]

Fig. 4. Modifications to adjust NOTICE._UNSAFE to respond to device
failure.

demon NOTICE _ UNSAFE|patient|
when not FAILED(LINK(?,patient}))
and start not SAFE( DVALUE(LINK(?,patient),?} )
or start FAILED(LINK(?,patient))
do NOTIFY [patient , FAILED(LINK (?,patient)) |

NOTIFY | procedure(patient,boolean|

Fig. 5. Modifications to distinguish normal and exceptional NOTIFY
invocations.

<

the patients themselves, and elaborate the “‘value’’ that
approximates the medical status of a patient. Since this
elaboration is independent of any devices (or lack thereof)
acting as intermediaries between patients and the moni-
toring system, it can be explored in parallel with the de-
vice elaboration. See Fig. 6 for the growing structure of
elaborations.

Motivation: A patient has not just one value, but sev-
eral—one for each “‘factor’’ (pulse, temperature, blood
pressure and skin resistance). The safety of a patient is
the conjunction of the safety of that patient’s individual
factor values.

High-Level Editing Step: We expect refinement of a
single value into a composite of values to be another fre-
quently recurring step in specification elaboration. A high-
level editing mechanism to perform this elaboration would
assist the specifier in modifying the declaration of the
value, introducing the new declaration of the composite,
and modifying the uses of that value throughout the spec-
ification. Some input would be required from the
specifier, namely indication of the value to be redefined,
delineation of the range of components of the new com-
posite, and direction of whether to replace uses of the sin-
gle value with the composite, or with a (further selected)
combination of the individual values of the composite.

Fig. 7 shows the new declarations (types ‘‘composite’’
and ‘‘factor,”” where factor is defined to be the range of
named factors that are to be monitored, and relation
““CFV”’ to relate a composite object to factors and their
corresponding values), the adjusted PVALUE relation of
patients (adjusted to relate a patient to a composite instead
of simply a value), and the adjusted use of PVALUE
within the NOTICE_UNSAFE demon.

We have chosen to leave SAFE dealing with values,
and within NOTICE_UNSAFE combine the safety of all
the factor values to determine the safety of the compos-
ite.® We have further chosen a combination that makes

®An alternative is to pass the composite to SAFE, leaving the nurse’s
station to determine the safety of a patient given the composite of that
patient’s values:

demon NOTICE_UNSAFE(patient]
when start not SAFE( PVALUE(patient,?) )
do...

relation SAFE(composite)
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initial specification

devices /r

factor
values

devices fail

:

Fig. 6. A parallel elaboration—refining patient value into factor values.

O = aspecification

l = an elaboration

type factor = { ’pulse, 'temperature, ’blood _ pressure, 'skin _resistance }
type composite
relation CFV(composite,factor,value)

implicit relation PVALUE(patient,composite)

demon NOTICE _UNSAFE [patient]
when start not all f | factor || SAFE( CFV(PVALUE(patient,?), f, ?) }
do ...

Fig. 7. Modifications to introduce composite of factor values.

safety of a composite of patient values be the conjunction
of the safety of its individual factor values.” This induces
the universal quantification over factors.

We are making the assumption that the safety of each
factor value is determined by the value alone; more likely,
safety is a function of both the value and the identity of
which factor it is, so we extend SAFE with an extra ar-
gument, the factor:

demon NOTICE_UNSAFE[patient]
when start not all f | factor ||
SAFE( CFV(PVALUE(patient,?),f,?), f )

do...

relation SAFE(value,factor)

Change: This elaboration changes the meaning of the
specification by adding more detail to the contents of
states—in Goldman’s terms for describing the evolution
of specifications, it increases the structural granularity.

Continuation: We could continue elaboration of val-
ues by asserting that the range of values for a factor is
linearly ordered, and that a “‘safe’’ value is any value be-
tween an upper and lower bound of values. Then the safety
table maintained by the nurse’s station need specify only
these upper and lower bounds, leaving it to the monitor
to compare the value it has with the bounds. This elabo-
ration leads to the situation described in the English state-
ment of the monitoring system; however, for the sake of
simplicity in this presentation, it is omitted.

4) Elaboration of the Monitor—Reads Periodically
Rather Than Continuously: At this point we turn our at-
tention to the monitor, and consider its task of reacting to
a number of changing values. The elaboration is to have

"Other obvious means for combining properties of components include:
disjunction (e.g., a composite is unsafe if any of its values is unsafe), ma-
jority (e.g., the economy is in a slump if more than half its indicators are
in a slump), the average (which would involve computing an average value
from the multiple component values, and then inspecting whether the prop-
erty held of that average).
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the monitor take observations at discrete intervals rather
than continuously. Since this elaboration is independent
of whether the monitor is observing patient values or de-
vice values, and independent of whether a patient has one
or several values, it can be done in parallel with the de-
vice elaborations and the patient value elaboration. See
Fig. 8 for the growing structure of elaborations.

Motivation: The motivation for this elaboration arises
from considering the realities of implementing the moni-
tor software that is supposed to react instantaneously to
changing values, sending off notifications when appropri-
ate. An implementation might not be capable of reacting
instantaneously, particularly if it is responsible for mon-
itoring a number of patients. Hence, motivated by imple-
mentation concerns, we should modify the specification.
We may decide that the monitor should read each pa-
tient’s value at an appropriately chosen time period (gen-
erous enough to permit the monitor to schedule the activ-
ities it has to perform), where the period for a patient is
set by the nurse’s station.

This is an instance of the interrwining between speci-
fication and implementation, a frequent phenomenon, ac-
cording to Swartout and Balzer [18], and hence one that
we must be able to accommodate within our formalization
and mechanization of the software development process.

Change: This elaboration step also alters the overall
meaning of the specification, by introducing the possibil-
ity that a patient’s value be unsafe without the nurse’s
station having been warned (possible if the monitor has
not yet reread the patient’s value since it changed). In
Goldman’s terms, this elaboration changes the coverage
(the range of possible behaviors).

Observe that this change to coverage is an implied con-
sequence of the elaboration, and is not explicit in the for-
mulation of the elaboration (in contrast, the elaboration
that introduced the possibility of device failure explicitly
added the new, exceptional, behaviors). Hence it is cru-
cial to recognize this implicit change. Two factors com-
bine to increase the likelihood of detection—the closed
system style specification, in which the environment (of
patients, devices, and nurse’s station) is at least partially
described, thus formalizing enough of the entire system
to capture the aspects that have changed, and the style of
parallel elaborations, in which each elaboration is a rela-
tively small increment to a specification containing only
relevant details, thus increasing the likelihood that we can
discern all the ramifications of the elaboration.

High-Level Editing Step: This change makes a con-
tinuous process, observation of some value, discrete; pre-
sumably, modifying any continuous observation in this
fashion is also useful to offer as a mechanized option.

The changes to our example are shown in Fig. 9. Agent
“‘clock’” has been added to simulate the passage of time,
and the monitor has been augmented with a demon to read
a patient’s value into the LATEST VALUE_READ re-
lation at periodic intervals (relative to the start time for
reading that patient’s value). Both the start time and the
period are determined by the nurse’s station. Reference to

initial specification

devices

monitor reads
values periodically

g N

Fig. 8. Another parallel elaboration—the monitor reads periodically.

factor

type clock with
{ relationCLOCK _ TIME(integer)

,
demonTICK _ TOCK]]
when true
do choose { CLOCK _TIME(?) := CLOCK _ TIME(?) + 1, null }

Clock is an agent with one relation, CLOCK _TIME, whose value is occasionally
incremented (in cvery state demon TICK _TOCK nondeterministically chooses to increment
the value or do nothing).

type monitor with
{ relation LATEST _VALUE _ READ(patient,value)

demon READ _PERIODICALLY [patient]
when CLOCK _ TIME(?) = START _READING _ TIME(patient,?) -+
(any integer) * PERIOD(patient,?)
do LATEST _VALUE_READ(patient,?) :=— PVALUE(patient,?)

demon NOTICE _ UNSAFE|patient|
when start not SAFE( LATEST _VALUE _ READ(patient,?) )
do NOTIFY(patient|

}

type nurse’s _station with
{ relation SAFE(value) , procedure NOTIFY/patient]

relation START _ READING _ TIME(patient,integer)

relation PERIOD(patient,integer)

Fig. 9. Modifications to change the monitor to read periodically.

a patient value has been replaced by a reference to the
latest value read for that patient.

The clock and the READ_PERIODICALLY demon
(and its associated relations) might exist as reusable com-
ponents that are brought in and tailored to the specifica-
tion; a high-level editing step could be used to adjust ref-
erences to the patient’s value to refer instead to the latest
read value.

5) Elaboration of the Safety of a Patient’s Value—De-
pends on Which Patient It Is: The definition of patient
safety is refined to be dependent on the patient. Again,
this is parallel to all the other elaborations; their structure
is shown in Fig. 10.

High-Level Editing Step: Parameterizing a construct
and its uses to be dependent on an extra argument is a
simple high-level editing step. It necessitates extending
the declaration of the construct, and extending uses of the
construct throughout the specification by providing the
extra argument (usually an obvious suggestion for the
value can be determined from the context).

Here, the relation modelling patient safety, SAFE, is
parameterized throughout the specification with the iden-
tity of the patient. Where SAFE is used (in the NO-
TICE_UNSAFE demon), the context provides the patient
whose safety is being checked. The changes are shown in
Fig. 11.
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monitor patient
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Fig. 10. Another parallel elaboration—safe depends on which patient it is.

devices fail

type monitor with
{ demon NOTICE _ UNSAFE|patient|
when start not SAFE( PVALUE(patient,?) , patient )

}

type nurse’s _station with
{ relation SAFE(value,patient) ... }

Fig. 11. Modifications to elaborate safe to depend on which patient it is.

Change: This simple step adds more detail to the
contents of states, i.e., is one of Goldman’s structural
changes.

C. Combining the Elaborations

Development of the specification from this point con-
tinues by combining the parallel elaborations described so
far.® The goal of combination is a single specification that
merges the effects of all the divergent elaboration paths.

1) Achieving Combination: Combination of parallel
elaborations is achieved by sequentially applying all the
steps of those elaborations. Where the parallel elaboration
structure implies some ordering, sequential application of
the steps must, of course, abide by the ordering. For ex-
ample, in our parallel elaboration of the patient monitor-
ing system, introduction of devices preceded device fail-
ure, hence in sequential application device introduction
must be done before device failure (but may be inter-
leaved with steps from other elaboration paths).

Whatever guidance was input by the specifier during
exploration of the parallel elaborations can be automati-
cally replayed to direct their reapplication in this sequen-
tial process.

2) Options During Combination: If the parallel elab-
orations were completely independent, combination could
be done entirely automatically. When dependencies do
arise, these manifest themselves as further options among
which the specifier must select (e.g., combining the elab-
orations of introducing devices and of refining the single
patient value to multiple factor values offers options of
having a single device per value, or a single device read-
ing the whole composite of values).

We believe that the specifier can recognize dependen-
cies in advance of actual combination by comparing pairs
of elaborations drawn from parallel paths. On recognizing
a dependency, the specifier then selects from among the
options offered by that dependency. When elaborations

A further aspect of the English statement of the problem description,
storing the readings in a data base. will be introduced later to illustrate
specification maintenance, Section I1-D.
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have a high-level characterization, it is often the case that
their combination also has a high-level characterization,
with which there may be associated a recurring range of
options. As with high-level editing steps, we postulate the
beneficial role of automated mechanisms, in this case to
help recognize dependencies and identify the range of op-
tions.

Having detected all the dependencies and made all the
choices, combination by the sequential application of
elaborations can proceed without the need for further in-
put from the specifier.

3) Combination of the Patient Monitoring System
Elaborations: The structure of all the parallel elabora-
tions to be combined was shown in Fig. 10; Fig. 12 pre-
sents a table showing pairwise comparisons of these elab-
orations. Note that only those pairs drawn from different
elaboration paths are compared, thus, for example, intro-
ducing devices and device failure need not be compared.
The comparisons that reveal dependencies are discussed
in detail next.

Comparing Elaboration of Devices and Factor Val-
ues: This comparison is between the elaboration that in-
troduced devices with the elaboration that refined a pa-
tient’s value into a composite of values, one for each
factor. We recognize options of having a patient’s device
read that patient’s composite of values, or having several
devices linked to a patient, one to read each factor value
(or something in between, with several devices, each
reading several factor values). The appropriate choice
must be provided by the specifier, depending as it does
upon the real-world domain of devices. If the former, the
devices are trivially changed to deal consistently with
composites rather than individual values. If the latter, each
device is parameterized’ with the factor whose value it
reads.

High-Level Characterization: This is a comparison
of two elaborations, one of which refines a value into
a composite, the other of which splices an intermedi-
ary into a data path transmitting the objects being re-
fined. Clearly, there is a choice between having the
intermediary transmit the composite resulting from the
refinement, or splitting the intermediary into several
intermediaries, one to transmit each component of the
refined type.

Comparing Elaborations of Factor Values and Mon-
itor Observing Periodically: We recognize options of
having the monitor read different factor values at different
times (by staggering the starting times for reading factor
values) and/or at different periods. This is similar to the
previous comparison, in that the value refinement may be
used to parameterize details introduced by the other re-
finement (in the previous comparison, devices; here, the
periodicity of observations).

"The same high-level editing step as was used to parameterize SAFE
with the identity of the patient. Section 1I-B-5.
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Fig. 12. Comparison of parallel elaborations to determine options.

High-Level Characterization: Comparison here is
between a value refinement and a change of a process
from continuous to periodic. If the process involves
the refined value, this suggests the option of parame-
terizing the newly introduced aspects of the discrete
process with that refinement.

Comparing Elaborations of Device Failure and Mon-
itor Observing Periodically: The options revealed by this
comparison are to have the monitor watch for device fail-
ure continuously or periodically. If the latter is chosen,
two further options arise: whether the monitor should ob-
serve devices for failure at the same time as it reads de-
vice value(s), or to define different starting times and/or
periods for this other activity.

High-Level Characterization: This is a comparison
of exception introduction with modification of a pro-
cess from continuous to periodic, where the exception
impacts this process. It offers the option of modifying
the processing of the exception to also be periodic.

D. Maintenance

There can be a number of reasons for later wanting to
change the specification: feedback from the attempt to de-
rive an efficient implementation, revision of requirements
based on experience with the operating program, or sim-
ply some domain change (e.g., a new class of devices that
behave in some different manner). A major tenet of the
transformation-based approach to software development
is that the change to the implementation is achieved by
changing the specification and rederiving the program, not
by changing the program directly (see [1] and [6] for dis-
cussion). This presupposes that we are able to make the
appropriate change to the specification. Incorporation of
changes fits in very well with the elaboration-based ap-
proach, since a change can be introduced as an adjustment
to one of the steps, or added as a new step at the appro-
priate location within the development structure. In either
case some or all of the combination process may need to
be reconsidered or extended.

For purposes of illustration, the reference to storing
factors in the original statement of the task—*‘The pro-

initial specification
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monitor
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devices fail periodically

i ;

store read values
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Fig. 13. Another elaboration—store read values.

safety
depends on
patient

type monitor with
{ relation LATEST _VALUE _ READ(patient,value)
demon READ_ PERIODICALLY [patient]
when CLOCK _ TIME(?) = ...
do LATEST _VALUE_ READ(patient,’) := PVALUE(patient.?) ;
STORE|patient, LATEST _ VALUE _READ(patient,?)]

' demon NOTICE _ UNSAFE|patient] ...
}

type nurse's_ station with
{ ..., procedure STORE|patient,value] }

Fig. 14. Modifications to store read values.

gram reads these factors on a periodic basis (specified for
each patient) and stores these factors in a database’”—
has been omitted in the preceding development, and is
introduced now as if it were an unanticipated addition to
the specification. Adhering to our style, we incorporate
this as an addition to the tree of parallel elaborations and
thereafter consider its impact on the combination process.

We seek to add it to a point as close as possible to the
root of the tree of elaborations, that is, as independent of
the other elaborations as possible. It is important to max-
imize such independence because it permits us to take full
advantage of our high-level editing tools in performing
this addition and any future maintenance. We place this
addition following the elaboration of the monitor from
continuous to periodic, since storage is coupled to reading
of values. The extended structure of parallel elaborations
is shown in Fig. 13, and the modified portions of the spec-
ification in Fig. 14, in which the read demon has been
extended to cause it to invoke STORE (a new procedure
of the nurse’s station), passing as parameters the patient
and the value read.

We incrementally effect the combination of this addi-
tional step with the other parallel elaborations by com-
paring it with them to recognize any dependencies, se-
lecting among any options that dependencies offer, and
applying the selected version. Comparison is shown in
Fig. 15. The only dependency we recognize is combining
the storage of values and device failure: should we store
values read from failed devices and/or store a record of
device failure? The other combinations are independent,
and can be effected automatically (e.g., combining stor-
age of read values and introduction of devices leads to
storage of the values read from the devices rather than
from patients).
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Fig. 15. Comparing store read values elaboration with other elaborations.

III. DiscussioN

We now review the overall methodology, summarize
the findings from our hand-conducted case studies, and
consider the open questions that must be answered to es-
tablish the viability of this whole approach.

A. Summary of Methodology

We have suggested that specifications be constructed
and explained incrementally, by applying elaborations to
an initial specification that is simple enough to construct
or explain at once. The elaborations effect refinements and
adjustments to the evolving specification. Often they have
some high-level characterization. It is intended that a
mechanized system be employed to assist in applying the
elaborations. When elaborations are independent, it is
recommended that they be applied in parallel, giving rise
to a tree structure rather than simply a linear structure of
evolution. Multiple specifications emerge as the leaves of
this tree, and must be combined to realize the final spec-
ification. This can be achieved by sequentially applying
all the elaborations in any order consistent with the tree.
Prior to this it may be necessary to compare the parallel
elaborations to detect and resolve minor dependencies that
offer multiple choices during combination.

B. Findings

We have done some preliminary studies in the form of
hand-performed developments of several small-scale ex-
amples (the patient-monitoring system, a small inventory
control program, and a coordinator of robot arms). These
are encouraging, insofar as they tend to confirm some of
our expectations:

Gradual Path to Final Specification: The develop-
ments readily break down into incremental elaborations,
and independence among elaborations occurs. We have
not attempted to empirically verify our claim that it is eas-
ier to construct or explain specifications by this incremen-
tal approach.

Recurring Idioms of Elaboration: The high-level na-
ture of a number of elaborations is evident, and is re-
peated across specification developments, for example,
refining a data type into a composite of values (a patient’s
single value into a value for each factor), and adding an
exceptional case to normal behavior (device failure).

High-Level Editing: Our hand-performed studies, even
of small-scale examples, clearly indicate that mechanized
support is essential! The mundane, repetitious bookkeep-
ing details of developing a specification by elaboration
and combination quickly become intolerable when done
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by hand. Without underlying mechanization, this ap-
proach is not viable as a paper-and-pencil discipline. For-
tunately, we can identify numerous plausible possibilities
for mechanized support of the elaboration and combina-
tion steps. Our intent is to use Wile’s POPART system as
the framework in which to build these mechanisms. PO-
PART provides facilities for manipulating grammatical
objects (in this case, Gist specifications) and for perform-
ing, and recording the structure of, those manipulations
[20]. In the past we have used this for experimenting with
the transformational development of Gist specifications
into programs.

Reuse: Few convincing examples of reuse of specifi-
cation components have occurred, perhaps because of the
paucity of case studies we have yet performed. Most of
the reuse has been concentrated within the high-level ed-
iting steps.

Maintenance: The simple addition of another parallel
elaboration was easy to incorporate. We also believe that
the continuations (suggested as further elaborations to
some of the steps) would also be easy to incorporate in-
crementally. We have yet to investigate more intricate
modifications (e.g., a modification that retracts some ef-
fects of an earlier elaboration, such as deciding that de-
vices for reading certain of the factor values do not fail);
however, our intuition is that the flexibility provided by
the incremental construction process will be beneficial to
such maintenance.

C. Viability of Approach and Open Research Areas

If the elaboration approach is to be viable, the extra
benefits it provides must compensate for the extra effort
that it entails.

The formal and lengthy nature of the elaboration pro-
cess is a potential source of considerable additional over-
head (as compared to constructing specifications di-
rectly). Hence one of the primary goals is to introduce
automation into this activity, which, if successful, will
greatly reduce the overhead. The major role for automa-
tion is in applying the high-level editing commands—these
should be mechanized to the point where little user input
is required to guide their application once they have been
selected. We anticipate that a number of high-level edit-
ing commands can be automated to this extent. Our intent
is to build a library of such mechanized commands. Two
crucial questions to be asked of such a library are:

Coverage: How successfully can the library provide
coverage, that is, when faced with a new task to specify,
will sufficiently many of the evolutionary changes already
be present as high-level editing steps in the library? At
present we do not even know what comprises ‘‘suffi-
ciently many.”’

Indexing: Depending upon the size of the library, find-
ing the right high-level editing command might be non-
trivial. We need a taxonomy of high-level editing com-
mands to serve as an indgx.

We expect that automation will play a lesser role in aid-
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ing detection of dependencies among elaborations (which
is done prior to combining them), because this would seem
to be a harder overall problem, but fortunately less of a
source of additional effort, since no matter how a speci-
fication is constructed, it will be necessary to consider the
potential dependencies among the portions of the speci-
fication. In this approach, the incremental nature of the
process may force the examination of a larger number of
cases for dependencies, but each case involves only the
explicitly delineated effects of the elaborations being
combined.

It may be the case that to reduce the cost of elaboration-
style construction below that of direct construction re-
quires a level of sophistication in the mechanisms that is
unobtainable in the foreseeable future. However, if we
can benefit from the record of evolution throughout the
lifetime of the specification, that amortized benefit may
outweigh the increased initial cost. One immediate benefit
is the use of the recorded evolution for explaining the final
specification. Another is the use of evolution as the basis
for maintaining the specification. Since evolution records
the specification’s design, we may hope that in modifying
the specification we can reuse the portions of the design
that are unaffected by the modification, and adjust those
that are affected. It should be easier to do this than to at-
tempt to modify the specification without access to its de-
sign history. Replay of designs in the face of change is a
major open research area, and it remains to be seen how
far we can progress in this direction. See [14] for a dis-
cussion of this general issue.

One other open research area is how to combine the
elaboration approach with other means for supporting
specification construction, such as generalizing from ex-
amples, construction by analogy (when the task is similar
to some previously specified task), and amalgamating
specifications of the different viewpoints of a system to
emerge with a specification of the whole system.
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